The realization space is [1 0 1 0 1 0 -2 x2 -2*x1 x2 x2] [0 1 1 0 0 1 -2 2*x1 -4*x1 + 2*x2 2*x1 - x2 x1*x2 + 2*x1 - x2^2] [0 0 0 1 1 -1 -x2 x1*x2 -x1*x2 x1*x2 x2^2] in the multivariate polynomial ring in 2 variables over ZZ within the vanishing set of the ideal Ideal with 2 generators avoiding the zero loci of the polynomials RingElem[x1 - x2, x1^2*x2 + 2*x1^2 - x1*x2^2 - 3*x1*x2 + 2*x2^2, x1 - x2 + 1, x2, x1^2*x2 + 2*x1^2 - x1*x2^2 - 3*x1*x2 + 2*x2^2 - x2, x1, 2*x1^2*x2 + 4*x1^2 - 3*x1*x2^2 - 6*x1*x2 + x2^3 + 3*x2^2, x1*x2 + 2*x1 - x2^2, x1*x2 + 2*x1 - x2^2 - x2, x2 + 2, x1*x2 + 2*x1 - x2, 2*x1 - x2, x1*x2^2 - 4*x1 - x2^3 + 2*x2, x2 - 1, 2*x1^2*x2 + 4*x1^2 - 2*x1*x2^2 - 2*x1*x2 + x2^2, 2*x1^2*x2 + 4*x1^2 - 2*x1*x2^2 - 4*x1*x2 + 3*x2^2 - 2*x2, x2 - 2, x1 - 1, 2, 4*x1 + x2^2 - 4*x2, 2*x1*x2 + 4*x1 - x2^2 - 4*x2, x1*x2 + 2*x1 - 2*x2, 2*x1^2*x2 + 4*x1^2 - 2*x1*x2^2 - 4*x1*x2 + x2^2, 2*x1*x2 + 4*x1 - x2^2]